Te Ara Mua – Future Streets
Suburban and institutional change

NZCPHM ASM
16 September 2016

Alex Macmillan¹, Jamie Hosking² and the TAM-FS team

Hamish Mackie³, Peter Baas⁴, Adrian Field⁵, Rau Hoskins⁶, Melody Oliver⁷, Tuiloma Lina Samu⁸, Joanna Stewart², Karen Witten⁸, Alistair Woodward²

¹Department of Preventive and Social Medicine, University of Otago, Dunedin; ²School of Population Health, University of Auckland; ³Mackie Research and Consulting, Auckland; ⁴Transport Engineering Research New Zealand Limited, Auckland; ⁵Dovetail Consulting, Auckland; ⁶designTRIBE Architects, Auckland; ⁷School of Nursing, University of Auckland; ⁸Shore & Whariki Research Centre, Massey University, Auckland
Active transport – what works?

- Encouragement ineffective \(\text{Ogilvie 2004, 2007} \)
- Little evidence for organisational travel plans \(\text{Macmillan 2013} \)

Natural experiments:
- Self selection bias a problem
- Improvements in destination access → more walking \(\text{Giles-Corti 2013} \)
- New walking/cycling infrastructure → more walking & cycling @ 2 years \(\text{Goodman 2014} \)
- Model communities NZ → less decline than controls \(\text{Keall 2015} \)
Background: Self Explaining Roads

With an **equity** focus,

measure integrated effects of retrofitting low income suburban streets

model generalisable costs/benefits

demonstrate a **process** for community participatory design and implementation of suburban retrofit

influence institutional change
Controlled before-after intervention

<table>
<thead>
<tr>
<th></th>
<th>Intervention area Māngere Central</th>
<th>Control area Māngere East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>Traffic behaviour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Motorist speed & volume measures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Video of behaviour</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ped & cyclist movements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resident surveys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mode use to local destinations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Physical activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Neighbourhood perceptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Injuries (self report & data linkage)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Children & adults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air quality measurements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NO$_2$ monitoring</td>
<td></td>
</tr>
<tr>
<td>After</td>
<td>Intervention and control areas were matched for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Access to amenity destinations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Street layout and age of development</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Demographics</td>
<td></td>
</tr>
</tbody>
</table>
Adult travel patterns

- Work (583)
- Study (264)
- Shops (1112)
- Indoor rec (346)
- Outdoor rec (426)
- Social (724)
- Church (573)

Types of transport:
- Motor bike
- Van/truck
- Car/taxi
- Public transport
- Cycle
- Walk
Summary

• Baseline: low active transport, large safety barriers
• Participatory street changes

Challenges
 – Business as usual inertia
 – Funding/timeline uncertainty

Achievements
 – Comprehensive baseline data
 – Construction almost finished
 – Strong community engagement
 – Institutional changes